60 research outputs found

    Deep Predictive Policy Training using Reinforcement Learning

    Full text link
    Skilled robot task learning is best implemented by predictive action policies due to the inherent latency of sensorimotor processes. However, training such predictive policies is challenging as it involves finding a trajectory of motor activations for the full duration of the action. We propose a data-efficient deep predictive policy training (DPPT) framework with a deep neural network policy architecture which maps an image observation to a sequence of motor activations. The architecture consists of three sub-networks referred to as the perception, policy and behavior super-layers. The perception and behavior super-layers force an abstraction of visual and motor data trained with synthetic and simulated training samples, respectively. The policy super-layer is a small sub-network with fewer parameters that maps data in-between the abstracted manifolds. It is trained for each task using methods for policy search reinforcement learning. We demonstrate the suitability of the proposed architecture and learning framework by training predictive policies for skilled object grasping and ball throwing on a PR2 robot. The effectiveness of the method is illustrated by the fact that these tasks are trained using only about 180 real robot attempts with qualitative terminal rewards.Comment: This work is submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems 2017 (IROS2017

    On the Lipschitz Constant of Deep Networks and Double Descent

    Full text link
    Existing bounds on the generalization error of deep networks assume some form of smooth or bounded dependence on the input variable, falling short of investigating the mechanisms controlling such factors in practice. In this work, we present an extensive experimental study of the empirical Lipschitz constant of deep networks undergoing double descent, and highlight non-monotonic trends strongly correlating with the test error. Building a connection between parameter-space and input-space gradients for SGD around a critical point, we isolate two important factors -- namely loss landscape curvature and distance of parameters from initialization -- respectively controlling optimization dynamics around a critical point and bounding model function complexity, even beyond the training data. Our study presents novels insights on implicit regularization via overparameterization, and effective model complexity for networks trained in practice

    A Multimodal Data Set of Human Handovers with Design Implications for Human-Robot Handovers

    Full text link
    Handovers are basic yet sophisticated motor tasks performed seamlessly by humans. They are among the most common activities in our daily lives and social environments. This makes mastering the art of handovers critical for a social and collaborative robot. In this work, we present an experimental study that involved human-human handovers by 13 pairs, i.e., 26 participants. We record and explore multiple features of handovers amongst humans aimed at inspiring handovers amongst humans and robots. With this work, we further create and publish a novel data set of 8672 handovers, bringing together human motion and the forces involved. We further analyze the effect of object weight and the role of visual sensory input in human-human handovers, as well as possible design implications for robots. As a proof of concept, the data set was used for creating a human-inspired data-driven strategy for robotic grip release in handovers, which was demonstrated to result in better robot to human handovers.Comment: The data set of human-human handovers can be found at: https://github.com/paragkhanna1/datase

    Data-driven Grip Force Variation in Robot-Human Handovers

    Full text link
    Handovers frequently occur in our social environments, making it imperative for a collaborative robotic system to master the skill of handover. In this work, we aim to investigate the relationship between the grip force variation for a human giver and the sensed interaction force-torque in human-human handovers, utilizing a data-driven approach. A Long-Short Term Memory (LSTM) network was trained to use the interaction force-torque in a handover to predict the human grip force variation in advance. Further, we propose to utilize the trained network to cause human-like grip force variation for a robotic giver.Comment: Contributed to "Advances in Close Proximity Human-Robot Collaboration" Workshop in 2022 IEEE-RAS International Conference on Humanoid Robots (Humanoids 2022

    Deep Double Descent via Smooth Interpolation

    Full text link
    The ability of overparameterized deep networks to interpolate noisy data, while at the same time showing good generalization performance, has been recently characterized in terms of the double descent curve for the test error. Common intuition from polynomial regression suggests that overparameterized networks are able to sharply interpolate noisy data, without considerably deviating from the ground-truth signal, thus preserving generalization ability. At present, a precise characterization of the relationship between interpolation and generalization for deep networks is missing. In this work, we quantify sharpness of fit of the training data interpolated by neural network functions, by studying the loss landscape w.r.t. to the input variable locally to each training point, over volumes around cleanly- and noisily-labelled training samples, as we systematically increase the number of model parameters and training epochs. Our findings show that loss sharpness in the input space follows both model- and epoch-wise double descent, with worse peaks observed around noisy labels. While small interpolating models sharply fit both clean and noisy data, large interpolating models express a smooth loss landscape, where noisy targets are predicted over large volumes around training data points, in contrast to existing intuition

    Hyperplane Arrangements of Trained ConvNets Are Biased

    Full text link
    We investigate the geometric properties of the functions learned by trained ConvNets in the preactivation space of their convolutional layers, by performing an empirical study of hyperplane arrangements induced by a convolutional layer. We introduce statistics over the weights of a trained network to study local arrangements and relate them to the training dynamics. We observe that trained ConvNets show a significant statistical bias towards regular hyperplane configurations. Furthermore, we find that layers showing biased configurations are critical to validation performance for the architectures considered, trained on CIFAR10, CIFAR100 and ImageNet

    FlowIBR: Leveraging Pre-Training for Efficient Neural Image-Based Rendering of Dynamic Scenes

    Full text link
    We introduce a novel approach for monocular novel view synthesis of dynamic scenes. Existing techniques already show impressive rendering quality but tend to focus on optimization within a single scene without leveraging prior knowledge. This limitation has been primarily attributed to the lack of datasets of dynamic scenes available for training and the diversity of scene dynamics. Our method FlowIBR circumvents these issues by integrating a neural image-based rendering method, pre-trained on a large corpus of widely available static scenes, with a per-scene optimized scene flow field. Utilizing this flow field, we bend the camera rays to counteract the scene dynamics, thereby presenting the dynamic scene as if it were static to the rendering network. The proposed method reduces per-scene optimization time by an order of magnitude, achieving comparable results to existing methods - all on a single consumer-grade GPU

    TD-GEM: Text-Driven Garment Editing Mapper

    Full text link
    Language-based fashion image editing allows users to try out variations of desired garments through provided text prompts. Inspired by research on manipulating latent representations in StyleCLIP and HairCLIP, we focus on these latent spaces for editing fashion items of full-body human datasets. Currently, there is a gap in handling fashion image editing due to the complexity of garment shapes and textures and the diversity of human poses. In this paper, we propose an editing optimizer scheme method called Text-Driven Garment Editing Mapper (TD-GEM), aiming to edit fashion items in a disentangled way. To this end, we initially obtain a latent representation of an image through generative adversarial network inversions such as Encoder for Editing (e4e) or Pivotal Tuning Inversion (PTI) for more accurate results. An optimization-based Contrasive Language-Image Pre-training (CLIP) is then utilized to guide the latent representation of a fashion image in the direction of a target attribute expressed in terms of a text prompt. Our TD-GEM manipulates the image accurately according to the target attribute, while other parts of the image are kept untouched. In the experiments, we evaluate TD-GEM on two different attributes (i.e., "color" and "sleeve length"), which effectively generates realistic images compared to the recent manipulation schemes.Comment: The first two authors contributed equall
    corecore